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ABSTRACT

In this paper we study the Riemann Problem for a system of conservation

laws which exhibit internal friction similar to that seen in viscoelastic

solids of the maxwell type. The solutions we obtain have a single shock And a

single contact discontinuity and off of these singular curves they are

smooth. The results we obtain are two fold. First we show this problem is

globally solvable in time; this requires precise a-priori estimates for the

solution off of the singular curves. Secondly, we obtain asymptotic or large

time information about the solution which guarantees that in a weak sense it

converges to special traveling wave solutions of the equations with compatible

data.
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SIGNIFICANCE AND EXPLANATION

Problems arisinq in continuum mechanics are often modelled by systems of
conservation laws. For perfect materials such as an elastic solid or an ideal
gas, these balance laws, when adjoined with the constitutive equations
describing the material, lead to systems of nonlinear hyperbolic partial
differential equations in which the characteristic speeds are dependent on the
amplitudes of the motion. Such systems have the property that nonconstant
disturbances are amplified and solutions which were initially smooth develop
discontinuities in finite time. It is well-known that this loss of regularity
can be prevented if viscous frictional forces are incorporated into the
constitutive assumptions describing the material.

A different situation obtains when the constitutive assumptions of a
perfect material are modified to account for long range memory effects but
viscous forces are neglected. The following results are typical: (i)
solutions generated by small amplitude, smooth data persist for all times and
decay to a rest state as time proceeds to plus infinity, and (ii) solutions
generated by large amplitude, smooth data develop discontinuities in finite
time. In a word, these results show that for small data the damping generated
by the memory effects competes favorably against the destabalizing mechanism
generated by the nonlinearity in the system while for large disturbances the
reverse is true.

It is also well-known that such memory like continua support
nonequilibrium solutions called traveling waves. These solutions have a
richer structure than their counterparts for perfect materials. In the latter
case, such traveling waves are piecewise constant solutions separated by a
shock wave advancing at constant speed. What is not known is whether these
traveling wave solutions are stable for memory like continua.

The purpose of this paper is to study a model system consisting of a
single conservation law adjoined to a constitutive equation of the memory
type. This system supports traveling waves similar in structure to those seen
in real systems of actual interest. What we are able to show is that the
solution of this system with piecewise constant initial data (the Riemann
Problem) converges, albeit in a weak sense, to the traveling waves. In the
process of establishing this result a number of techniques are developed which
should be helpful in examining more realistic systems.

The responsibility for the wording ani views expressed in this descripte

summary lies with MRC, and not with the authors of this report. AZ
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THF, QIEMANN PROBLEM FOR THE SYSTEM ut + a = 0 and (a - f(u)) t + (a - UF()) =xt

J. m. rreenherq
I
'
* 
and r.inq Hsiao
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1. Introduction

In this note we consider the system

u*t + O 0, and (F)

(a - f(u)) t + (a pf(u)) = 0 (C)

where 0 < p < I and f satisfies

f(O) - 0, 0 < f(u), and 0 < f"(u), 0 <u (1.1

Other assumptions will be imposed on f as they are required. This system serves as a

model for the equations of motion of a viscoelastic solid. In this analogy (B) represents

the balance law and (C) the constitutive ecuation. In fact we take (C) to he the same as

the equation representing a nonlinear-maxwell solid [1,2]. The relation of the system (B)

and (C) to the equations of motion for a maxwell solid are the same as the relation of the

2

Hopf equation, ut + (2)= 0, to the equations of motion for an ideal gas; narely in
x

certain situations the respective reduced equations approximately describe what is

happening in the full system and, as importantly, they provide one with some intuition

about the more complicated systems.

nur interest is in the Riemann Problem for (t) and (C); that is in solutions of (A)

and (C) which assune the following data at t = 0

f u_,Lzf(u_)), x ( 0

(u,0)(xP) = (1.2)

(0,0), x > 0.

Here, u > 0. This system is hyperbolic. It has one nondpqenerate rbara-teristir fiold

I S.1.N.Y.-Buffalo and the National Science Foundation, Washinqton, P.C.
2Srnwn rTniverqitv and Academia Sinica of China.
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which propagates with speed f'( ) and one linearly degenerate field, namely the lines

x = constant. In regions where (u,0) is smooth, (R) and (C) are equivalent to

at + f'(u)a + (1 - P)a - = 0, and (c)

ft - ( - )a + V* = 0 , (W)

where , , and u are related by

f(u) - 0 or equivalently u = f-1 (a + *) o (u)

The syscem (B) and (C) also supports traveling waves which assume the data

(u ,Lf(u )) and (0,0) at x equal minus and plus infinity respectively. Since these

waves will play an important role in what follows we record their properties now. A

traveling wave which meets the aforementioned boundary conditions is a solution of (B) and

(C) which is a function of T = t - x/c where

Uf(u
C . (1.3)

The u component of this solution satisfies

d
7,(f(u) - Cu) = (cu i ) (1.4)

and the limit relations

lim 0(T) = 0 and lim 0(T) = u - (1.5)

3 and 0 are obtained from u by

a(T) = cu(T) and t(T) = f( (T)) - Cu(T) . (1.6)

The results for traveling waves are summarized below:

(a) When c < f'(0) there is a unique (to within a translation), smooth, strictly

Lncreasing solution of (1.4) satisfying (1.5).

(b) When c > f'(0) there is a nondecreasing weak solution of (1.4) which is

unique to within a translation. The particular solution with a jump

discontinuity at r 0 has the following additional properties:

(i) u(T) 0 o, < < T < 0

(ii) lim+ (t) = u. where u. > 0 is the unique solution of
T*0+

-2-



f(u.) - cu,, and (1.7)

(iii) M(T) satisfies (1.4) on (0,0) and meets the boundary condition (1.5)

at plus infinity.

The global (in time) existence question for the Riemann Problem (B), (C), and (1.2) is

easily resolved. One may either use a fractional step variant of Glimm's method (3] or the

finite difference approach used by Greenberg [4] for a system of integro-differential

equations of which (B) and (C) are a special cast. Using an iteration scheme and the

contraction mapping principle it is also relatively easy to show there is some time

Tmax > 0 such that u, o, and * have the following properties:

i) (u,O,-) (u_,Pf(u ),(l - u)f(u_)) for x < 0 and 0 < t < Tmax

(ii) there is a C IOT ma,) curve x - s(t) with s > 0 such thatmax dt

(u,O,f) is C
1  

and satisfies (B), (C), (a), (f), and (u) on

0 < x < s(t) and 0 < t < Tmax;

(iii) (u,a,f) - (0,0,0), x > 9(t) and 0 _ t < Tmaxl

(iv) the line x = 0, 0 < t < Tmax, is a contact discontinuity and the

following limit relations obtain:

lrm (u,O,t)(x,t) = (u0 t),Uflu),*0 t)) (1.8)+

where u o() is defined implicitly by

f(u OM) -f(u )e
-
l
t 

+ f~u)(1 - e
-  ) (1.9)

and

*0 t) = 0 - )f(u_)(1 - a (1.10)

v) the curve x - s(t), 0 < t < Tmax, is an admissible shock wave and

satisfies the Rankine-Huqoniot conditions for (B) and (C); namely the

relations

lim (C,I,)(xt) = (U(t),f(U(t)),O) , (1.11)

x-s(t)
x<q(t)

-3-
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u(t) > 0(1 (1.12)

and

ds f(U(t))
- = -(--, and s(0) = 0 ; (1.13)dt 0(t)

(vi) in the region 0 < x < s(t) and 0 < t < Tna x  the following

inequalities obtain:

0 < u < u_, 0 < a < f(u_), and 0 < ; < (I - p)f(u ), and (1.14)

0 < ut, 0 < at 0 < ' ,U x < 
O, 13 < 0, and ox 

< 0 . (1.15)

One qoal of this investigation as to establish conditions which guarantee that

7= +-. Our results take two forms. When u is small we are able to obtain uniform

bounds for the t and x derivatives of 0, f, and u which are independent of Tmax

and depend only on the fact that U(t) - lim u(x,t) is positive. That Tmax = +m then
x~s(t)
x<s(t)

follows from the fact that for u- small T(t) cannot vanish for any finite time t.

When u is large we are also able to obtain uniform bounds for the t and x

derivatives of 0, *, and u which are independent of Tmax These bounds are predicated

on the lower bound estimate u(x,tj > n > 0, a fact which is true if f satisfies a

certain technical condition (see (2.53)) and one which is met in the special case

f(u) = f(O)u + k0 U
2
/2 when u is large.

knother goal is to obtain asymptotic information about the solution as t :Toes to

uf(u
infinity. One set of results apply when c = -- < f'(O) and the associated travelingu

wave is smooth. liere we show that 13(t) d=f lim u(x,t) satisfies
x+s(t)
x<s(t)

dU
< 0 and lim U(t) + 0 . (1.16)

t+-

W- also establish a connection between the solution of the Riemann Problem and the smooth

traveling wave diqusqed earlier. Specifically, if we l0t x = x(a,t), t _ T(a), be a

(IThe constraint 11(t) 1 0 is simply the Lax mntropy condition for this
prohiem. It is easily checked that '1(0

+
) = u0(1) 0.

-4-
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level line of u; i.e.

u(ic(a,t),t) - a, 0 < a u- and t > T~a) (.7

where T(Q) > 0 is the first time that either u0 (T(a)) =a or 1(T(a)) a, and

U0 (t)

c M t) ax (a2,t)da ,(.8

then we show that

lrn c AVCt) . C . - (1.19)

Equation (1.19) is a weak statement about the convergence of the solution of the Riemann

Problem to a traveling wavel it states that the average speed of propagation of the level

lines of u converge to the speed at which the traveling wave propagates.
Luf CU)

when c - - > f'(0) our asymptotic results are of a different character. Here

we show that

ut-x/c) < u < u-, cu(t - x/c) < a(x,t) < pif(u ), and

f x~ /c)) - cu~t - X/C) < O(K,t) < (I - ii)f(u ) (1.20)

on 0 < x < ct and t > 0 and that the shock x - s(t) satisfies

(u - OWN'() -C)

ct< ~) cc -(-A -fCO) du .(1.21)

U. u(c - f(IL )

The function u(s) is the u component of the traveling wave defined earlier in item (b)

on traveling wave solutions. it satisfies (1.4) on T > 0 and the initial condition

0.7). The inequalities (1.20) and (1.21) also guarantee that

J u ,mf~u ),(1 - uf(U )), < c
lim uO,)(Att) =(1.22)1(0,0,0), c

-5-



2. A-Priori Estimates

A. General Remarks

In this section we develop a-priori bounds which guarantee that the upper bound for

the interval of existence, Tmax, is plus infinity.

We confine our attention to the characteristic equations

at + f'(u)a + (1 - W)a - uO f 0 (o)

- (1 - u)o + L'0 = o , (0)

and

u = f-1 (a + €) <==> a + € - f(u) (u)

which we insist hold in 0 < x < s(t) and 0 < t < Tmax' a also satisfies the boundary

condition:

7(0,t) =if(u_), 0 < t < Tma x  (BC)

and (,f) obey the Rankine-Hugoniot conditions:

lim C(x,t) d=f E(t) > 0 and lim f(x,t) = 0, 0 < t < Tmax
x+s(t) x-s(t)
x<s(t) x<s(t) (RH)

where

ds
d- = Z(t)/f-1(E(t)) and s(0) = 0

If (0,f) is a solution of (a), (f), (u), (BC), and (RH) it extends to a solution of the

original Riemann Problem (B), (C) and (1.2) by the procedure:

(u_,1f(u_)), x < 0
(u,0)(x,t)=

(0,0), x > s(t) and 0 < t < Tmax

In the sequel when we say (0,0) is a "solution" we mean it is a solution to

(a), (0), (u), (BC), and (RH). Our first task is to develop some properties of the

"solution" of this problem. These will depend upon the entropy constraint that F(t) > 0,

0 < t < Tma x.

Theorem 2.1. Suppose (a,0) is C{T(x) < t < Tmax and 0 < x < s(T )} andsax

C {T(x) < t < Tma X and 0 < A < s(T max) and is a "solution". Then

at > 0, T(x) < t < Tma x and 0 < x < s(T ax ) , (2.1)

-6-
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*t > 0, ax < 0, and f. 
< 

0, T(x) < t < Tmax  and 0 < x < s(T ax ) (2.2)

The function t = T(x) is the inrerse of x - s(t) and satisfies

dT f' (E(T(x)))
ax T and T(0) = 0 0 0 (2.3)

defsaife
Proof. We start wt the observation that (p,q) (, t t i

Pt + f'(u)p, - k(u)(p + q)2 + (I - V)p - - 0 ,
0 < x < s(t) (2.4)

qt V~ + pq- 0 , 0 < t < Tinax
q- (1 - u)p + uq = 0,

p(Ot) - 0 and lim q(x,t) = (1 - p)Z(t) > 0, 0 < t < Tmax  (2.5)
xKs(t)
x<s(t)

Again, the u - f-(Ia + f) and u * k(u) is defineo by

def2k(u) - f"(u)/(fl(u))2 (2.6)

Lemma 2.1. Suppose p(x,t) > 0 for T(x) < t < Tma x  and 0 < x < s(Tmax). Then

q(x,t) > 0 for T(x) < t < Tmax  and 0 < x < s(Tmax). [

Proof. The lemma follows from the identity

q(x,t) - (I - I)E(T(x))e "U(t-T(x)) + (I - P) f e-U(t-8)p(x,s)ds
T(x)

and the hypotheses on p and C3 0

Lemma 2.2. p(x,t) > 0 fo, T(X) < t < Tma x  and 0 < x < s(Tmax).

Proof. We start with the observation that

lim (Pt + f'(u)px)(xt) = k(U (t))( " U)2 
2
(O)e-

2
Ut + 110 - )Z(0)e

" t

= k(u0 (t))(1 - )2 U2 f 2u )e-21t * U (1 - u)f(u_)e- lt > 0

and thus we are quaranteed that p is positive in some domain T(x) < t < Tma x  and

0 < x < r. We now assume the lemma is false. Then there is a first time, t., and

point, x,, with T(x,) < t. < Tma x  and 0 < x. < s(Tmax) such that p(x.,t,) - 0 and

(pt + f'(u)px)(X.'t*) < 0. Rut, (2.4) I implies that

-7-



(Pt + f'(u)px)(X..tt) - k(u(xt,,))q2 (x*.t,) + ijq(x.,t,)

and thus Lemma 2.1 implies that the riqht hand side of the last equation is positive. This

is the desired contradiction and establishes the lemma. [

The identities

u = f-1 (o + ) and f'(u)ut = p + q (2.7)

together with

f'(u) > 0, p > 0, and q > 0 (2.8)

imply that

-ut = o < 0, T(x) < t < Tmax and 0 < x < S(Tmax) (2.9)

If we now exploit the identities

t
*(x,t) = (I - 1) f e- (t-s ax,s)ds

T(x)

t

x -(1 -U)T'(x)E(T(x))e
-
U
(t- T (x )

) + C0 - ) e-o(t-s)a (x,s)ds
T(x)

and

T'(x) = f (E(T(x)))/E(T(x)) and E(T(x)) > 0, 0 < x < Tmax

and (2.9) we obtain

x < 0, T(x) < t < Tma x and 0 < x < s(Tmax) . (2.10)

This concludes the proof of Theorem 2.1. 0

An immediate corollary to Theorem 2.1 is

Theorem 2.2. Under the conditions of Theorem 2.1 the following bounds prevail

0 < 0 < Pf(u_), 0 < f < (0 - P)f(u_), and 0 < u < u_ (2.11)

for 0 < x < s(t) and 0 < t < Tmax * 0

B. The case where u is small.

We now focus on obtaining upper bounds for (a ,t ) , (p,q) and lower bounds for

(C ,x ). These estimates will rely on the assumption that a is small. For ,implicityX x

def 2we shall assume that k(u) _ f"(u)/(f.(u)) 3atisfies

d (u) < 3 . (2.12)

dui

-8-
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This assumption guarantees that

ko def k(0) > k(u), 0 < U < U• (2.13)

The assumption (2.12) is not essential; if we abandon it, the same estimates obtain

def
provided we redefine k0 by k0  = max k(u).

0<U<u

The inequalities a < pf(u) and 0 < 0 and the equation q = (t 1( - ) - VO

imply that

q < P(I - P)f(u ), 0 < x _< s(t) and 0 < t < Tma x

Equations (2.4) I and (2.5) in turn imply that

Pt + f'(u)p x < ko(p + p(1 - U)f(u ) 2 - 0? - W)p + 02 - u)f(u ),

0 < x < s(t) and 0 < t < Ta x  (2.14)

and

p(0,t) = 0, 0 < t < Tma x  (2.15)

Moreover, if

f(u) 0 , (2.16)
41k0

then (2.14) may be rewritten as

pt + f'(u)px< ko(p - p)(p - P,), 0 < x < s(t) and 0 < t < Tax (2.17)

qhere

0 < p. 2 - I,(, - I)f(u ) _2 /(1 _ 1)2 - 4k )1( I- )f(u <
2k 0  2k0  0

0 0 , 2 ) 4k 1( - )f(u ) • (2.18)

An immediate consequence of (2.15) and (2.17) and the bound q _ u(I - ;i)f(u) is

Theorem 2.3. If u satisfies (2.16), then

*t ( 1i(l-P)f(u ) and a < - W(1-U)f(u ) - (I-(-)f(u (219)
_ t 2k 0  _ 0 0

Moceover, the Ldentities

S=-u = -(p + q)/ff(u) (2.20)
x

tnd

-9-
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x= -(I - u)f-l(E(T(x)))e - ( t-
T(X)) + (1 - U) f e-( t-s)x (x,s)ds (2.21)

T(x)

imply that

a-1 LI) + /(1 _) 2  4k u(1 - u)f(u ) ) (2.22)
x- 2k 0 f'(o0) 0

and

X (2.23)

2k0  2 _ 4k i(I-ij)f(u (Ioe _(-I ) C3
23

Remark 1. If we assume that f satisfies the additional hypothesis < 0, then we

du3 
-

find that if (2.16) holds the following inequality must also prevail:

uf(u )
C= - < f'(o) • (2.24)

u

3
Thus, if (2.16) holds and --df < 0 the traveling wave associated with the states

du
3

(u ,Lif(u )) and (0,0) at x equal minus and plus infinity respectively is the smooth

w one described in Section 1. E

The results of Theorems 2.1-2.3 imply that if (2.16) holds, then the functions

a, *, ot, t , x I ' and x are uniformly bounded independently of Tmax so long as

Z(t) > 0 for 0 < t < Tm* . Thus, if (2.16) holds, the only way for Tmax to be finite

is if E satisfies

lim E(t) = 0 • (2.25)

t+T max

de f
Theorem 2.4. The function Z(t) = lim I(x,t) cannot satisfy (2.25) for any finite

xs (t)

Tmax .  5 x<s(t)

Proof. Suppose the Theorem is filse. Then, there is a first finite time, 
T
max > 0, such

that Z(t) > 0, 0 < t < Tmax, and (2.25) holds. To show this cannot happen we obsrve

that

-10-
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a ( + ;a )(S(t),t) = -(I - u)E(t) + a (S(t),t)( t__)_- f.(f-l(E))) (2.26)
At t x x-

where 0 (s(t),t) = lim a (x,t). The a-priori boundx
x-s(t)
x<s(t)

- (1 l 
- U - /1-U

2 
)- k U(I - Uf(U.) - < 0, 0 < x < S(t) and

2k 0 f,(0 0x-

0 < t < Tmax, together with the uniqueness theorem for ordinary differential equations,

applied to (2.26), imply that if lim Z(t) - 0, then E(t) i 0 for 0 < t < Tmax*

tT
max

This contradicts the fact that lim E(t) = wf(u ) 0 and establishes the Theorem. 0
t*0

Summarizing the results of this subsection we obtain

Theorem 2.5. If u- satisfies (2.16), then Tma - , and the bounds of Theorems 2.1-

2.3 obtain. 0

C. The case where u is large.

We now turn to the case where a- is large, we start with a lower bound estimate for

the shock, x = s(t). This estimate is valid for all u_ > 0, but it is only useful

when u_ is large.

Theorem 2.6. The shock curve x = s(t), 0_< t < Tmax ,  satisfies

IAf(u )
s(t) > ct where again c = - . (2.27)

u

Proof. The conservation law ut + O = 0, houndary condition o(0,t) = uf(u ), andx

Rankine-Huqoniot condition (RH) imply that

d s(t) s(t)
a- f u(x,t)dx = uf(u ) and f u(x,t)dx = uf(u )t . (2.28)

0  0

The upper bound u(x,t) < u_ for 0 < x < s(t) and 0 < t < Tma x  combines with (2.28)2

to yield the desired result.

-I1-
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In the remainder of this subsection we shall assume that

def Pfu
c > - f'0) (2.29)

Our next theorem provides lower bounds for a, #, and u on the domain 0 < x <ct and

0<t < Tmax *

Theorem 2.7. Let 0o,0,u) be a solution of (a), ( ), (u), (BC), and (RH). Then the

following lower bounds prevail:

a(x,t) > cut - i/c), *(x,t) >f(u(t - x/c)) - cu(t - i/c)')

and u(x,t) > ;(t - x/c) (2.30)

on the domain 0 < x < ct and 0 < t < Tmax* The fun(-tion u(-) is the u component of

the traveling wave described in Section 1 and satisfies

(f.(;) - c) 37 (C; - Mf(u)), T > 0, and uCO) - u. > 0 , (2.31)

where
f(u*) Iuf(u-)

C c - , (2.32)

and the triple

(0,0,u)(x,t) . (cu,f(;) - cu,u)(t - ic/c) (2.33)

is the unique solution of (a), (0b). and (u) satisfying the boundary conditions

o(O~t) - cu~t) < uf(u ) and *(ct,t) - 0, 0 < t . 0 (2.34)

Remark 2. The function ;(*) may be extended to the interval (-T(c),') as a solution of

(2.31). The number T(c) > 0 is given by the quadrature, formula

U*

T(c) =f (f'(u) - cOdu (.5
U(C(u - Ijf Cu)) (.5

and 0 < 'i~c) is the unique solution of

Pf Cu
fl(u(c)) - c = ~ . 0 (2.36)

T~he strieft ine.;udlity for G fIls at (x,t) -(0,0) where -0.

-12-



Remark 3. The triple (_,_,u) defined by (2.33) 8olves (a), (4), and (u) and satisfies

the initial-boundary conditions

(a,*)(x,O) - (cu,f(u) - cu)(-x/C), 0 < x < CT(C) (2.37)

and

C(Ot) - ejut) and 0(c(t + T(c)),t) = f(u(c)) - cu(C) < 0, t > 0 • (2.38)

Moreover, for any curve x - P(t) satisfying Ct < p(t) < c(t + T(C)) we have

w((t),t) <0.

Proof of Theorem 2.7. We first observe that if (o,O,u) solve (0), (f), (u), (BC), and

(RH), then the properties of u(.) and the fact that ct < s(t) imply

a(0,t) - cu(t) < 0(0,t) - pf(u_), 0 < t < Tmax (2.39)

and

*(ct,t) - 0 < *(ct,t), 0 < t < Tmax • (2.40)

Lemma 2.3. Suppose a < a on 0 <_x < ct and 0 < t < T... . Then j < on 0 <x <ct

and 0 <t <Tmax .  0

Proof. The lemma follows from (2.40) and the identities

*(x,t) = O(x,x/c)e-IA
lt

-
x /c ) + (1 - U) f e'U t-s O(x,s)ds

x/c

t

> *(x,x/c)e -u lt
-
x /c ) + (I - j) f e-Ult-S) Ox,s)ds , (2.41)

x/c

and

t
(x,t) e 1 - u) f e -s )t' (xs)ds . 0 (2.42)

x/c

The preceding lemma together with (2.39) imply

*(0,t) < 0(O.t), t > 0 (2.43)

and (2.39), (2.40), and (2.43) are sufficient to guarantee the Theorem is true in some

neighborhood t < T... and 0 < x < C with the caveat that -0 At the

origin. We now suppose the Theorem is false. Thon there is a first time t. and point

-13-
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x. with t < t < <x, < "max such that o(x.,t,) =o(x,,t,). 'oreover,

at (x,,t.) the following inequalities hold.

+ <u 0)o-ox,,t, < 0, (0-±)(x,,t,) > 0, and (u-u)(x,,t,) > 0 • (2.44)
3-1

The latter two inequalities follow from Lemma 2.3 and the relations u = f-1 (a ) and

u = f- (a + 4). 4 little algebra shows that

(3+f'(u) a )(0-0)(x 't, P ($-O)(X,,t, + a (tb ,t* )(fl(u) - fl(u))(X,,t,)

and this identity, toqether with (2.44), the hypothesis f" > 0, and the fact that

a (x,,t,) - -c (T - t, - x/c) < 0 yield the contradictory inequality

lNt + fl(u) lx)(a - 0)(x,,t,) > 0. This completes the proof of the Theorem. 0

Our next task is to obtain an upper bound for the shock curve x = s(t). We start

with the identity

s(t) ct
f u(x,t)dx - Uf(u )t f f u dx (2.45)
0 0

which we rewrite as

S(t) ct
f u(x,t)dx = f (u_ - u(x,t))dx • (2.46)
ct 0

if we now exploit the inequality ux < 0 and (2.30)3 we obtain

S(t) ct t
u(s(t),t)(slt)-ct) < f u(xt)dx = I (u-u(x,t))dx < f u -u(T))dT

ct 0 0

u(T) (u -u)(fl(u)-c) u( Cu -u)(f'(u)-c)
fdu < f --- du (2.47)

u(c-if(u)/u) C u(c-pf(u)/u)U* U*

where
f(u*) Vf(U)

u(s(t),t) = lim u(x,t) . f1 (:(t)) and c - (2.48)
x+s(t)U, U

x<q(t)

and i(.) is the function defined in (2.3tl. The Rankine-fugonLot equation

-14-
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Is f~u(s(t),) def
u(8(8:8 together with (2.47) imply that y(t) d s(t) - ct satisfiesdt u ~),t)

U" Cu - u)(f'(u) - c)

dt < -(c - f'(0)) + ( max - d ) (2.49)
t- 2c u(c - uf(u)/u) yU*

and y(O) = 0. The number fa is given by f;Ax - max f"(u). JAn immediate
maxma O<uou

consequence of (2.49) and y(O) = 0 is

Theorem 2.8. The shock curve x = s(t) satisfies

s(t) < ct + c6(c), 0 < t < Tmex , (2.50)

where

f. u _ (U - u)(f'(u) - c)

6(c) - max__ f u(c - Mf(u)/u) du • 0 (2.51)
2(c - f'(O))c u.

2

Remark 4. If we restrict our attention to the case where f(u) = f'(0)u + -- it is
2

easily established that the numbers T(c) of (2.35) and d(c) of (2.52) satisfy

2(c-f,(0))c 2 1. -l (c-f,(O))lo (2-I)c-Mt'()) &(c-f'CO))
r(C)2 (c-Uf.(0) j  2(1- - 2(c-ufC(O))
6Cc) = 12c 1-u) + (C-f'( 0 )log (Ucf'COlj 1(2.52 )

P (c-1uf'(O)j

uniformly on f(0) << c and 0 1 - < 1. 0

Motivated by the rqsults of Remark 4 we shall make the following additional assumption

6(c)

uniformly on f'(0) << c and 0 < 1 - << 1. 0

Using the results of Remark 3 and the arguments used to establish Theorem 2.7, one

easily obtains

Pf(u )
Theorem 2.9. If (2.53) holds, then for f'(0) << c - the conclusion of Theorem 2.7

are valid on the domain 0 < x < (t) and 0 < t < Tmax,

Our final task in this subsection is to obtain upper bounds for p - at and q t

and lower bounds for 0 and " Throuqhout, we shall assume that
x

dp f 2kCu) ' f(u)/(f,(u)) is decreasinc on u > 0. We also assume that (2.53) holds and

that c > f'(O) is larqe enouqh so that the conclusions of Theorem 2.9 hold. Pinally, we

-15-
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shall assume that

ef uf'(u) - f(u) >, 0 < u (2.54)
f(u)

satisfies

(u) > 0, 0 < u . (2.55)
du

Our goal is to show that subject to the above hypotheses, there is some 0 < <

such that the functions p - a and q = t satisfy

t t

p(xt) - e P(xt), and (2.56))P~x~t),T(X) < t < Tma

- (tT~x )Ql~t)0 < x- TMal
q(x,t) - el(t-T(x)) Q(xt) } (max (2.57)

where P > 0 and Q > 0 are bounded independently of Tm.ax Again, t = Tx) is the

inverse of the shock x - s(t).

It is a relatively simple matter to show that if p and q are given by (2.56) and

(2.57) and satisfy (2.4) and (2.5), then P and Q satisfy

Pt + f'(u)Px< k(u)e
-
X
(t- T (x ) (P + Q) 2 (1 - i + Xj(u))P + PQ , (2.58)

and

Qt - (I - M)P - ( -)Q, (2.59)

in the domain 0 < x < s(t) and 0 < t < Tmax , and

P(O,t) - 0 and lim Q(x,t) - (I - u)Z(t), 0 < t < Tma x  (2.60)
x*s(t)
x<s(t)

The results of Theorem 2.1 guarantee that P and Q are positive on 0 < x < 9(t) and

0 < t < Tma x while the results of Theorem 2.9 and (2.53) guarantee that

u(x,t) >u(c) > 0, 0< x < s(t) and 0 < t Tmax (2.61)

where again u(c) is defined by

fV(_c)) - c (2.62)

and tim u(c) - . The Inequality (2.61), when combined with the hypotheses
COW dk

- < 0 and > 0,
du du

and the results P > 0 and Q > 0 for 0 < x < 9(t) and 0 < t < Tmax  imply that P

,anJ Q satisfy the Lnequalittis

-16-



Pt 
+ 

f'(u)Px 
< 
k(P + Q)2 - (1 - u + ).)P + PQ , (2.63)

Ot - (1 - )P- Q- , (2.64)

on the same domain. The numbers k and _ are defined by

k - k(u(c)) and 0 < j= j(u(c)) . (2.65)

Remark S. If we restrict our attention to the case f(u) - f'(0)u + kou
2
/2, then

ko________koU (c - f'(0))

k (u ) - (2 , u = (2f 0 ) + k U) u (c ) - k 0 ) ,

(fl(0) + k U) 0()'T2T0 ;k-u 0

and lim (k(u(c)),j(u(c))) = (0,1). [
C+,W

Motivated by the last remark we shall assume that k(.) and j(*) Satisfy

lir (k(u(c)},j(u(c))) - (0,1) . (2.67)

we now turn to the inequalities (2.63) and (2.64). Throughout, we assume that

0 < < P. it is easily checked that the set P > 0 and 0 > 0 such that

k(P + Q)2 _ (0 + Xj - u)P + IQ = 0 is given by

def /U1 kl+ ) 0<P<(Q . Q(P) e -, + ,/u
2 

+ 4k(t + XI.. - U, < P < (1 + U,.- ,1 (2.68)

and that

k(P + Q)
2  0 +X ) -)P + uO 0, 0 < 0 ( Q(P) and 0 < P < ( + X- U) . (2.64)

It is also a simple matter to verify that if (v - X)_ - (1 - ) 0, then the riqht hand

sides of (2.63) and (2.64) vanish simultaneously at (P eq,Q eq) where

,(- A)m - X) - (1 - W
Peq (1 - 2 0 , (2.70)

and
%,i - ij)((u - )j - (I - P))

Qeq = - > 0 • (2.71)
(1 A) 2k

we now chooqe so as to maximize q(). The rpqult is

P;j - (1 - 1) 41 . .) - 1
X (2.72)

max (2 - ),j + 1 - (- +}j 
" 
1 -(

-17-
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Substitution of (2.72) into (2.70) and (1.71) yields

def (wj+1+u)(u_- (I-Li)(2i2U-1) - (-1)(2u-1+u(1+i))

Peq(U1) eqmax) - 4((2-)j_ + (1-10))(I+j_) k (2.73)

and

def (ulj - 11-I11(2(2i-1) - (1-)(2I-tliui1+!)))
_eq(U,-) - eql max- 41+)

2
k , (2.74)

and these formulas, together with (2.67), imply that if 0 < 1 - U<< I I:;-j' ,*,. << c,

then Pe(uj) and Qe(uj) are both positive; in fact we have
eq Ceq(1' 31I

n ikPeq(i,j),k0Q (ul,j)) * (-, -) • (2.75)
-m(keq -L' -'!eq -1' B 8

Our final task is to obtain conditions which guarantee that P < P. (114) and

< Q (p,_) for 0 < x < s(t) and 0 < t < Tmax. The fact tht

lir o(x,t) = E(t) < pf(u ) for 0 < t < Tinax  together with the boundary condition

x+s(t)
x<s(t)

lim Q(xt) = (1 - i)Z(t) guarantee that Q < Qeq(p,) on x = s(t) provided

X*s(t)

x<s(t)
CU1J-i 1-u) )(i2i 21-1 )-i(1-1(2l-l+u( 1+1)) )

uC1-j)f~u < 
0
eq (U,) or L(1-ii)kf(ii ) < - (2.76)

4(1+1)2

Vf(u
Moreover, the hypotheses on f, k, and j guarantee that for c = f(u(c)) = - u

sufficiently larqe the last inequality holds provided 0 < I - P << 1. With these

preliminaries we are now in a position to prove

Theorem 2.10. Suppose the flinctitns k > 0 and j > 0 satisfy dk/du < 0 and

dj/du > 0 and that (2.67) holds. Suppose further that f'(0) << c ani 0 < I - Uj << I

are such that (i) (2.53) holds, (Ii) that the functions P eq(P,i) and eq (o,j) defined

in (2.73) and (2.74) are both positive, and (iii) that (2.76) holds. Then the functions
- l"( - ii)

P and Q defined in (2.56) and (2.57) with A - - > 0 satisfy
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0 < P(x,t) < Pq(Pi.) and 0 < Q < Qeq(P,1) (2.77)

for T(x) ( t < Tma x  and 0 < x ( s(Tmax). n

Proof. The lower bounds follow from the results of Theorem 2.1 and as previously

observed Q satisfies the desired upper bound on the boundary x - s(t), 0 < t < Tma x .

The identity lim Q(x,t) - 0(1 - u)f(u )e
- (

U
-
X
)t  

together with (2.76) and+

2(1 - i)i

-) - (2 - P)* + I - P > 0 imply that Q(O,t) < eq for 0 < t < Tma x . The

differential inequality (2.63), together with (2.64) and the results summarized in (2.68)

and (2.69) imply that the upper bounds cannot fail in T(x) < t < Tmax  and

0 < x < s(Tmax) and this concludes the proof. (

Lower bounds for 0 and *x are readily obtainable from the upper bounds for 0x x t

and t" The results are that if the hypotheses of Theorem 2.10 hold, then

a > e
-
X(t-T(x)) (Peq("',) + (2.78)

- f'(O)

and
-x

>
-1U u

"
(t-T(x)) (1-u) -~-~)

(-(-Ou- -_) (PO(ij) + Qe(,.j))(e -X(tT(x))-e - i ( t - T ( x ) ) ) (2.79)

x - (1 - u)

for T(x) < t < Tma x  and 0 < x < S(Tmax) with X - (2 - u)j + (1 - > 0 and

2(1 - )
- - + 1 0. Finally, since the bounds of Theorems 2.7 throuqh 2.10

and the inequalities (2.78) and (2.79) are independent of 
T
max' we obtain

Theorem 2.11. If the hypotheses of Theorem 2.10 hold, then Ta x - +1 and the bounds of

Theorems 2.7 through 2.10 and the inequalities (2.78) and (2.79) hold with TM - +". 0

This concludes Section 2.
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3. Asymptotic Results

A. The case where u is small

In this section we shall assume that (2.12) and (2.13) hold. We shall also assume

that u_ is small enough so that (2.16) is valid. Our goal is an asymptotic estimate

def
for U(t) d lir u(x,t). The Rankine-Hugoniot conditions (1.11)-(1.13) imply that U

x~s(t)

x<s(t)

satisfies

dU . Ut(s(t),t)(1 - f(U) ( 1 - u)f(U) and u(O) = u0  (3.1)d' t Uf'-TT) f'(u)

where

utlslt),t) - lim utlx,t) < I (11 -M)- ( -)2 _ 4k JA(1 ll 1M 3.2)

xs(t) 2k 0f'(0) 0-

x<s(t)

and 0 < u 0 < u is the unique solution of

f(uo ) = uf(u) ( (3.3)

The fact that k0f'(O) = f(O)/f'(0) and the inequalities

(I - 0) - - U)2 _ 4k0m(i - )f(u ) < 4k0uf(u_ ) < (I - 1) (3.4)

when combined with (2.16), (3.1), and (3.2) yield

dt - f(O) flu) flU)

The fact that

def fl(O) flU) f(U)
h(U) = -- (1 (3.6)() Uf'(U) fl(U)

satisfies

h(O) - 0 and dh (0) - -3/4 < 0

guarantees that if u 0 and hence u- are small, then U(t) + 0 as t * ; in fact for

u0  small lir e tU(t) = 0 for any 0 < A < -3/4. In the special case where
t*.

f(U) - f'(0) + kot)2/2, it is easily verified that

(3f'(0)U + 2k0,
2
1

h(U) . - - - U < 0 (3.7)4(f'(0) + k0oU)

dnd thus no additional re'4trictione on u0  are requirel.

-20-
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We conclude this subsection by showing that when u is small (in particular %mall

enough so that U(t) * 0 as t ' 1) the solution to (B), (C), and (1.2) converges, in a

weak sense, to the traveling wave described in Section 1. Specifically we shall prove

Theorem 3.1. The average speed of propagation of the level lines of u converge to the

speed of the traveling wave; that is the function

Uo(t)
CAv(t] u Cot) - ~t I() - (a,t~da 38

satisfies
uf(u_)

lim C M(t) - . (3.9)
t~tAV u-

The function uo(t) is defined in (1.9). ?or numbers 0 < a < u_, the curve

x = x(a,t), t > T(a), is a level line of u; that is it satisfies u(x(c,t),t) - a.

For 0 < a < u0 (O), T(a) is defined by U(t(a)) - a and for u0 (0) < a < u_, T(a) solves

u (T(a)) - a. 0

Proof. Our first task is to show that

uf(u ) - f(t))
CUv(t) = Uo(t) 6(t) (3.10)

To obtain (3.10) we note that the defining relation u(x(Q,t),t) = a implies that

u x 1 and ut + XtUx - 0. If we now define E(a,t) - O(x(a,t),t), we see that

a (U't) = a xx and this, combined with ut = -ox and xt . -utxQ, yields the

conservation law:

xt(at ) - ra(at), U(t) < a < u 0 (3.11)

Equation (3.10) now follows from (3.8) and (3.11) and the limit relation, (3.9), is a

consequence of (3.10) and lim (U(t),u0 (t)) - [Ou_).
teM

B. The case where u is large

To obtain the agymptotic result

-21-
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I Pf (U-)
(f U ,f(u ),(I - i)f(U )), X < c - .. .- -- u

im (uo,¢)(Xt,t) - (3.12)
t bf(u )

(0,o,0), A > c - -

all that is required are the lower bound estimates (2.30), the inequalities (2.27), (2.51)

and (2.52), and the assumption that Tmax w (which we know is true if the hypotheses of

Theorem 2.10 hold). When A > c, the curve x - At satisfies

S(t) < t (3.13)

f. - (u - u)(fm(u) - c)
max f deT

for times t > 2(f - c)(c - f'(5))c u(c - 1f(u)/u) du , T(A,c). Thus

(uiu,)(x,t) 0 for s(t) < x and t > T(A,c) establishes (3.13)2. That (3.13)I holds

follows from (2.30) and the fact that when X < c

lim u(t - _l t) - lim u(T) = u (3.14)c
t.. I

C. Concludinq remarks and open questions

As was mentioned earlier, we haive succeeded in showing that when u is small,

cAv(t) converqen to the speed ,f the travelinq wave. One would also like to know if this

result is true when u_ is larqe. The regult wouli follow from (3.10) provided we knew

ie f
that when u_ was larqe, U(t) lim u(x,t) converqed to the number u. (defined hy

x s(t)
,c~s t)

f(u.) ut(u_)
- - ) as t approached infinity. ?t the moment this is an open question (and

u u f(u.)

is equivalent to establishing that lir (t) = - ).
t U*

%I *, $f(u I/u > f'())

Assuming for the moment that li. r(t) - and hence that
t t 0 , Wf(u I/u < f'(2) I

Cf( tI
Urn CAV~t) u-- we wouli lso!q like to know whether c(i,t) = xt( i,t) = (a%,t) (soc

t ~= t

, ~ '



uf(u ) J u. <x .< u when uf(u_)/u > f'(O) l

(3.11)) satisfies lim c(a,t) I for <

u_ 0 < a < u when Pf(u_)/u < f'(0)

Finally, we end with a tantalizing calculation which would be sufficient to guarantee
.f(u )

that lim U(t) = u* when - > f'(0). The differential equation

du

t
4

u ut(s(t),t) f ( f(U)
d-t f,(u) f,(u-"-

together with the identity

c(U(t),t) f(~)ut(~)t
ut(s(t),t) + (1 - U)U(t)

implies that TJ satisfies

dU (0 - P)(c(U(t),t)U(t) - f0u(t)))

d-t = (f'(U(t)) - c(U(t),t)) and U(O) = u0  (3.15)

def
where again c(a,t) xt (a,t) = Z (at) and u0 is defined in (3.3). If we now knew

uf(u ) - f(U)
that cAv(t) = u (t) - U(t) satisfied

cAv(t) < c(U(t),t)

then the inequality uW(t) < u and (3.15) would imply that U okeys the inequality

du (I - I)(uf(u )U - f(U)u )

d-t 
> 
(f,()(u - U) - (1,:(u) - f(U))) and U(0) = u0 • (3.16)

An immediate consequence of (3.16) is that J(t) > u. for all t > 0. At this point we

would he able to conclude that lir U(t) = u,. The result would follow from the upper and
t d U

lower bound,; for the shock curve (see (2.50)) aria from the fact that j iq uniformly

hounded on [0,I).
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which exhibit internal friction similar to that seen in viscoelastic solids (,f
the maxwell type. The solutions we obtain have a single shock and a sinqle
contact discontinuity and off of these sinqular curves they are smooth. The
results we obtain are two fold. First we show this problem is qlobally solvablo
in time; this requires precise a-priori estimates for the solution off of the
sinqular curves. Secondly, we obtain asymptotic or larqe time information about-
the sylution which guaranteos that in a weak sense it converqes to special
trave ing wave solutions of the eouations with coimpatiblo data 4--
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